Next-Gen Data Center Improving TCO & ROI in Data Centers thru Virtualization and Blade Servers

© 2007 IMEX Research All Rights Reserved Copying Prohibited Please contact IMEX for written permission

Anil Vasudeva Chief Analyst & President vasudeva@imexresearch.com 408-268-0800

(1) Scales poorly (2) Difficult to manage (3) Reliability is questionable (4) Management costs out of control

CFO vs. CIO - Shocking Observations

• IT Infrastructure Investments yet to achieve TCO/ROI Financial Objectives

Genesis of NGDC

- Expected Boost in Corporate Productivity not Visible to CFO/CEOs
- Post 2000 Dictum Do More with Less

Reason – IT Spiral

• <u>Web Growth</u> \rightarrow New Apps Mushroom \rightarrow

Low Cost Windows (Tier-1) Servers Sprawl

Business Growth → More Computing Power

→ Applications/DB → (Tier-2,3) Servers Sprawl

- More Servers →[↑]Storage →[↑]DC Facilities →[↑]IT Support →[↑]IT Staff
- IT Costs ≠= Business Growth

© 2007 IMEX Research All Rights Reserved

DC Infrastructure Nightmares of CIOs Opying Prohibited

End to End IT Infrastructure with HA & Security rohibited

© 2007 IMEX Research

©2003-2007 IMEX Research All rights Reserved

Follow SIVA[©] for a Scalable & Dynamic NGDC^{ed}

Automation

Automatically Maintains App Service Level Objectives using Policy Based ILM

Virtualization

Pools Resources, Optimally Provisions them for given Usage/Application to Deliver Business Service, Monitors Usage

Integration

Integrates physical infrastructure sing Scalable Blades to Optimize CAPSIMS: Cost, Availability, Performance, Scalability, Interoperability, manageability & Security

Standardization

Reduce CAPEX via using Industry Standard Infrastructure - HW, Interfaces, Open Source SW – OS, Middleware, and Shrink Wrap Applications > Reduced OPEX in Support, Training for Delivery of Business Services

© 2007 IMEX Research All Rights Reserved Copying Prohibited

RESEARCH.COM

©2003-2007 IMEX Research All rights Reserved

Blade Infrastructure:Local Area Grid (LAGC)

Blades - TCO Savings & ROI

© 2007 IMEX Research All Rights Reserved Copying Prohibited

3 Year TCO Savings Rack vs. Blade Servers 100% 80% % Contribution 60% OPEX 67% 40% 46% 20% 33% CAPEX 25% 0% **Rack Servers Blade Servers**

TCO Savings in.. OPEX Staff/ **Support** 25% Maintenance/ **Downtime** 54% Facilities/ **Power** 21% CAPEX **Networking** 19% **Servers Storage** 46% Infrastructure 13% SW Infrastructure 22%

Data: MEX Research 2004

Power & Cooling Spending to rise to 40% of DC Infrastructure Spending by 2010

©2003-2007 IMEX Research All rights Reserved

Where does the power go in Data Centers ?

Many techniques, methodologies and equipments from air cooling to liquid assisted cooling available form a variety of vendors and Consultants (Email <u>imex@imexresearch.com</u> for more info and Assessment of competitive vendor products, consultants and data center power & cooling integrators) Source: IBM 2005

Computer Simulation using widely available software (e.g. Fluent Airpack Ansys CFD ...) to verify Cooling Designed is the most cost effective before commiting to final implementation.

Market Segments by Application Sying Prohibited © 2007 IMEX Research

Large DBs

OLTP

Scale In

Biside Server

Scale Out

ack Clusters

on Availability (U. FF)

Chatters Gu Chatters 1012 107 06 103

Scale

Large SMP Parallel Sysplex © 2007 IMEX Research All Rights Reserved Copying Prohibited

Large Databases by OS

Linux

Win

UNIX

z/OS

DSS

Storage Usage vs DB Capacity

The rapid rise of Clusters in HPC

	Ten years ago	Five years ago	Today
Largest system	143 Gflops	2.1 Tflops	70.7 Tflops
Teraflop systems	0	2	398
Research/Academic	60%	48%	41%
Industry	24%	46%	55%
Linux clusters	0	6	294

©2003-2007 IMEX Research All rights Reserved

HPC – From Academia to Wall St. to Hollywood

High Performance Computing

Commercial Visualization

Bioinformatics Decision-Support Er Systems

Entertainment Audio/Video OnDemand

100+ Teraflops

 \succ Throughput = 100 GB/s

> Throughput = 1.2 GB/s

Data rate & capacity

©2004--07 IMEX Research.com

Implementing Virtualization

Client Workstations LAN Ethernet Switches Application & DB Servers SAN GbE or FC Switches Storage Arrays At Various Levels Microprocessor – Intel VT, AMD-Pacifica OS

- zOS, pOS, UNIX, Windows, Linux
- IBM, HP, Sun, VMWare, Xen, SWSoft

File System

- DFS

Networking

- Multiport

Storage

- Host, SAN, Controller
- In-Band, Out-of-Band Management

Hypervisor Model

Features

- Guest OS Each app contained by its own OS instance
- VZ layer spoofs each OS into believing as if its the only OS on the system

• Users can mix and match guest OS's with various versions of Windows or Linux.

Major Players VMWare, Microsoft, XenSource

OS Virtualization

Features

- A single OS hosts multiple applications.
- VZ layer handles resource allocation between apps
- VZ layer also provides protection to the host OS so that a misbehaving application does not cause problems for the system as a whole

Major Players SWSoft, Sun/Containers

• A single server 1.5x larger than standard 2-way server will handle consolidated load of 6 servers.

© 2007 IMEX Research

ovina Prohibited

- VZ manages the workloads + important apps get the compute resources they need automatically w/o operator intervention.
- Physical consolidation of 15-20:1 is easily possible
- Reasonable goal for VZ x86 servers - 40-50% utilization on large systems (>4way), rising as dual/quad core processors becomes available
- Savings result in Real Estate, Power & Cooling, High Availability, Hardware, Management

Average Business App. Test Overnight Development Online Random

VZ Extensions at Processor

- Guest OS's run unmodified for a larger base of virtualization software
- Increased isolation to improve security of virtual machines
- Offers architectural enhancements to improve efficiency of switching between hypervisor and the guest OS's
- Implemented primarily in I/O bridges and other system core logic
- Enables virtualization software to map devices directly to virtual machines

Storage Virtualization – Desired Features

Storage VZ - Must Have Features

Scale Non-Disruptively in Capacity

- Snapshot Point-In-Time across Stg.devices
- Remote Replication across Heterogeneous Stg. Devices
- Policy Based Non-Disruptive Data Migration between Heterogeneous Stg Systems & Between Stg Tiers
- Centralized Mgmt of all Stg.VZ under Single Image
- Support Tiered Storage
- Volume Management for Multivendor Stg. Systems
- Common Set of Tools: Provisioning, Mgmt & Replication

Storage VZ - Vendors

- Cloverleaf, Datacore, EMC
- FalconStor, Fujitsu Computer Systems
- Hitachi Data Systems
- IBM, Network Appliance
- StorageAge, Sun
- Symantec/Veritas ...

Host Services Integration					Storage		
File system monitoring Storag		Storage pr	Storage provisioning Win		n, LINUX, Solaris	Layer	
SAN Management							
Management Console	Management of iSCSI HBAs		MultiPath IO Supp and Failover		Security (iSNS, CHAP, SRP)	SAN Management	
Virtualizatio	n	Mirroring	Snapsh	ot	Fail-Over	Layer	
iSCSI Target Management LVM, Error Handling, SCSI Daemon, API Interoperability						Device Service Layer	
HW Acceleration: TOE, iSCSI Offload, IPsec							

TCO Savings with Virtualization

© 2007 IMEX Research All Rights Reserved Copying Prohibited

• WW 5.1 million data centers, Costs \$100-175M to build a large DC 2007

- ~\$1005/Sqft, \$40,000/Rack, \$2,500/Server, 2.5U
- 82% of installed equipment (Server, Storage, Network) has only10% utilization

Data Center Trends - Summary

- For every \$1 invested in new IT infrastructure, \$7 spent to maintain
- For every \$1 in new Server spending, 42c spent on Power & Cooling /2006
- Virtual Servers growth outstrip Physical servers by 50% > Rise in managing VM
- Blades increasing Power/Rack by 10x Need Power/Cooling, Weight, Solutions to pursue

Consolidation

IT in Mega Data Centers, Data & Video Info Vaults at SPs

• New Technologies Adoption Necessary – as a Competitive Weapon

- Hi Density Blades, Multicore CPUs, Industry Std Computing Infrastructure, TB Disks,
- Fast Networks: 10GbE, MPLS; Global Reach
- Convergence (Voice Video, Data): Unified Communications, VoIP
- Mobility & Wireless

• Focus On

- Consolidation & Virtualization
- IT Services and not IT Resources or Infrastructure
- Rise of Cloud Computing and SaaS, SOA in its wake
- Control over Complex Systems Interdependencies to avoid creating system wide instabilities
- Automation of Low-Level Risks to free up on Initiatives aligning IT (CIO) to Business (CEO)

Summary - Virtualization & Automation

- Follow SIVA[©] in executing your DC strategy
 - Standardize (Windows/Linux, GbE, IP Storage/iSCSI,SATA..)
 - Integrate (Blades, Management Tools..)
 - Virtualize (Infrastructure-uP,Servers, Storage, Networks,Clients w P2V tools)
 - Automate (Provide important Apps required resources automatically w/o intervention to ↓OPEX costs)
- Server Virtualization (VZ) now a mainstream technology
 - VZ turning DC core infrastructure upside down, DC Professionals very happy with its future use
 - VZ means "Doing More for Less" (finally making CFOs get off your back)

c2003-2007 Combined with VZ & Consolidation TCO Reduction of 60-2009 Combined with VZ & Consolidation TCO Reduction of 60-2009 Combined with VZ & Consolidation TCO Reduction of 60-2009 Combined with VZ & Consolidation TCO Reduction of 60-2009 Combined with VZ & Consolidation TCO Reduction of 60-2009 Combined with VZ & Consolidation TCO Reduction of 60-2009 Combined with VZ & Consolidation TCO Reduction of 60-2009 Combined with VZ & Consolidation TCO Reduction of 60-2009 Combined with VZ & Consolidation TCO Reduction of 60-2009 Combined with VZ & Consolidation TCO Reduction of 60-2009 Combined with VZ & Consolidation TCO Reduction of 60-2009 Combined with VZ & Consolidation TCO Reduction of 60-2009 Combined with VZ & Consolidation TCO Reduction of 60-2009 Combined with VZ & Consolidation TCO Reduction of 60-2009 Combined with VZ & Consolidation TCO Reduction of 60-2009 Combined with VZ & Consolidation VZ & Consol

©2003-2007 IMEX Research All rights Reserved

For copy of case study on how a major financial institution implemented virtualization email imex@imexresearch.com

Next-Gen Data Center Improving TCO & ROI in Data Centers Inv Virtualization and Blade Servers

For TCO/ROI Financial Worksheets & DataCenter Analysis & NGDC Industry Report Email: imex@imexresearch.com Tel:(408) 268-0800

Anil Vasudeva Chief Analyst & President vasudeva@imexresearch.com 408-268-0800

